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of dexmedetomidine (Hannivoort model [4]). The EEG 
showed a mix of 10  and  12 Hz spindles with some delta 
waves, with a peak-max phase coupling pattern [5, 6]. A ret-
robulbar block was then performed with injection of a vol-
ume of 6 mL of a mixture of lidocaine 1% and bupivacaine 
0.25% with no reaction during the injection.

After the retrobulbar injection,  the ANI increased to 
95 andthere was a decrease in the alpha power in the EEG 
with alpha predominant spindles around 12 Hz in conse-
quence, the target concentration of dexmedetomidine was 
decreased to 0.3 ηg/mL.

Incision occurred 8 min after the block, no hemodynamic 
changes and movement were noticed but the patient briefly 
groaned. Simultaneously, the ANI decreased from 88 to 42 
and the EEG showed an increase in the beta power with 
increase in the Patient State Index (PSI). After intravenous 
administration of 10 µg of fentanyl and increase of the tar-
get concentration of dexmedetomidine to 0.6 ηg/mL, the 
ANI increased to 84 and became stable between 92 and 82 
until the end of the procedure ;the initial alpha/delta pattern 
gradually appeared again, allowing to decrease the target 
concentration of dexmedetomidine to 0.3 ηg/mL until the 
end of the surgerywhile the propofol infusion was always 
kept at a plasmatic target concentration of 1.2 µg/mL. (Fig-
ures 1 and 2). The PSI was always above 50, the upper limit 
of the optimal hypnotic state for general anesthesia and 
burst suppression was not detected during the entire case.

To the editor:
A 58-year-old male patient with past medical history of 

arterial hypertension, coronary artery disease, previous isch-
emic stroke on the territory of the left middle cerebral artery, 
diabetes mellitus, obesity and previous bariatric surgery was 
presented for complex vitrectomy with an estimated dura-
tion of 160 min. The patient received a peribulbar block 
and sedation. Sedation was achieved with Target Controlled 
Infusion of propofol and dexmedetomidine. The electroen-
cephalogram (EEG) was monitored with a 4-channel frontal 
montage at F7-Fp1-Fp2-F8, reference electrode at AFz and 
ground electrode at Fpz using the SedLine® monitor incor-
porated in the Root® monitoring platform (Masimo, Irvine, 
CA, USA). In addition, the Analgesia-Nociception Index® 
(ANI, MDoloris Medical Systems, Lille, France) was moni-
tored using the proprietary module available for the Root 
monitor.

Patient achieved initially a level − 4 of the Richmond 
Agitation-Sedation Scale [1] with a plasmatic target con-
centration of 1.2 µg/mL of propofol (Marsh model [2, 
3] ) and an effect-site target concentration of 0.6 ηg/mL 
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Abstract
The present case of a patient with several co-morbidities undergoing complex vitrectomy under peribulbar block and seda-
tion with Target Controlled Infusion (TCI of propofol and dexmedetomidine with EEG and Analgesia Nociception Index 
(ANI) monitoring illustrates the benefits of multimodal monitoring to differentiate the effect of hypnotic and antinocicep-
tive drugs.It is highlighted the delta-alpha electroencephalographic pattern showing adequate sedation, the beta arousal 
pattern in the EEG concommitant to decrease in the ANI translating insufficient anti-nociception.
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1 Discussion

Perioperative multimodal monitoring constitutes an essen-
tial cornerstone of the modern practice of balanced general 
anesthesia and sedation, optimizing pharmacokinetic and 
pharmacodynamic interactions between antinociceptive 
and hypnotic drugs acting in different neural pathways by 
distinct mechanisms [7], eventually combined with periph-
eral nerve blocks [8]. A multimodal strategy with close and 
individualized dosing titration is particularly important in 
patients with significant co-morbidities to avoid exposure 
to unnecessary high doses of drugs and to decrease the inci-
dence of deleterious side effects.

EEG monitoring during anesthesia and sedation has been 
advocated as an important tool, allowing optimization of 
drug dosing and detecting and predicting neurological com-
plications [9–14]. Different electroencephalographic signa-
tures of anesthetic drugs have been described [9], including 
spectral changes associated with decrease in drug delivery 
by infusion pump malfunction [15], related with cognitive 
performance [16], dynamic changes in the EEG during tran-
sitions between loss and recovery of consciousness [17] and 
general interpretation of EEG spectrograms [9, 14, 18]. In 
addition, noxious stimulation may have profound effects in 
the EEG, inducing three possible different changes: beta 
arousal, paradoxal delta arousal and alpha dropout [19].

Quantification of nociception in patients under anesthesia 
has been based on the physiological responses to the nox-
ious stimulation and to surgical stress, particularly on the 
effects on the Autonomous Nervous System (20–21). Heart 
rate variability, reflecting the balance between sympathetic 
and parasympathetic activity [22], has been used for that 
purpose and constitutes the single parameter used to calcu-
late the ANI [21, 23]. ANI is a dimensionless number vary-
ing from 0 to 100 where higher ANI values reflect higher 
parasympathetic activity and corresponding to less nocicep-
tion [24] and has been shown to be superior in detecting 
painful stimulation compared to heart rate and mean arterial 
pressure [25] and to be affected by antinociceptive drugs 
like opioids [26] and regional anesthesia (27–28). ANI has 
also been studied in awake or sedated patients on spontane-
ous ventilation suggesting that patients totally or partially 
conscious may benefit from its use and that mechanical ven-
tilation is not an absolute requirement for heart rate vari-
ability processing by ANI monitor [29].

Of our knowledge, there is no reported direct effect of 
antinociceptive doses of dexmedetomidine on ANI. Anti-
nociceptive effect of dexmedetomidine is mainly mediated 
by the activation of inhibitory interneurons synapsing in the 
dorsal horn of the spinal cord (30–31) and by a dose-depen-
dent decrease in the arousal level through a decrease in pre-
synaptic release of norepinephrine from neurons projecting 

from the locus coeruleus onto the basal forebrain, thalamic 
intralaminar nucleus, preoptic area of the hypothalamus and 
to the cortex [32–34]. Despite the highly selective alpha-2 
agonist effect of dexmedetomidine, it appears that low doses 
as those used in this report are not affecting the cardiac elec-
trophysiology and the heart rate variability in particular 
independently of nociceptive stimulation [35–37].

The present case provides important information regard-
ing the different electroencephalographic signatures of seda-
tion and nociception in addition to the changes in the ANI:

 ● Initially, the alpha-delta pattern and the mixed 10 Hz 
and sleep spindles were the result of the combination of 
propofol and dexmedetomidine [9, 14], with the shorter 
spindles arising from the effect of dexmedetomidine 
[38].

 ● The appearance of the beta arousal pattern after the inci-
sion was interpreted as the result of insufficient antinoci-
ception; this sudden and brief increase in the beta power 
disappeared after administration of a very small dose of 
fentanyl and an increase in the target concentration of 
dexmedetomidine, resuming to the alpha-delta pattern.

 ● The ANI increased after the block, had a significant 
decrease after the incision and increased again after the 
administration of fentanyl and increase in the dose of 
dexmedetomidine. Remarkably, there were no changes 
in the blood pressure and in the heart rate following the 
incision (Fig. 3) in agreement with Funcke et al. [25].

These changes in the EEG and in the ANI were globally 
translating an insufficient anti-nociception due to a short 
time between the block installation and the surgical inci-
sion and to the decrease in the dose of dexmedetomidine. 
The following sustained high values of ANI were compat-
ible with a full installed block allowing to decrease the dose 
of dexmedetomidine. The propofol target concentration was 
not changed as only the nociception-antinociception bal-
ance was shown to be inappropriate.

Other interesting findings are the low voltage of the EEG 
signal (optimal scale of 3 µV/mm), the higher power in the 
different bandwidths of the EEG on the left side, both com-
patible with a pre-existing pathological brain and the past 
medical history of a left hemisphere stroke and the absence 
of burst suppression which seems to be a risk factor for post-
operative neurocognitive disorders particularly in fragile 
brains (39–40).

In conclusion, this case report shows how multimodal 
monitoring with EEG and processed heart rate variability 
may help to understand the insufficient balance between 
anesthetic consciousness depression and antinociception, 
allowing to optimize drug dosing schemes accordingly to 
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Fig. 1
 Screenshot of Root Monitor
From above to the bottom, 2 channels of EEG, the PSI trend, the spec-
trogram, the average ANI trend and the instant ANI trend.
Black box shows the alpha -delta pattern after starting sedation with 
TCI of propofol and dexmedetomidine, with alpha band more power-
ful on the left side.
Blue box shows the beta arousal following the incision, with the 
increase in the power of beta activity, again more visible on the left 
side.

White box shows the disappearance of activity in the beta and a 
decrease in the alpha bandwidths as the result of the increase of target 
concentration of dexmedetomidine.
Magenta box shows the alpha-delta pattern more visible on the left 
side after the decrease of target concentration of dexmedetomidine.
The red arrow indicates the increase in the average ANI after the block. 
The green arrow shows the decrease in the ANI after the incision. The 
purple arrow shows the increase in the ANI after the increase in the 
concentration of dexmedetomidine to 0.6 ηg/mL.
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Fig. 3
 Trends of heart rate and blood pressure.

Green arrow – retrobulbar block.
 Red arrow – incision.

 

Fig. 2
Simulation with TivatrainerX ( https://www.tivatrainerx.com) of the 
infusion of dexmedetomidine using the Hannivoort model. Green 
line represents the predicted plasmatic concentration. The red line 
represents the effect-site concentration. The orange line represents 

the Modified Observer’s Assessment of Alertness/Sedation scale 
(MOAA/S) predicted by the model. The yellow line represents the 
Bispectral Index (BIS) values predicted by the model. The blue bar 
represents the infusion rate.
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